In The News

3D Printing Solving Nuclear Waste Problems – 3D Printing Trade Association

3D printing is finding more and more innovative applications – from printing meat in space to using giant printers to fashion entire boats – and the latest intriguing development is using the technology to help recycle more nuclear waste.

Over in the US, scientists from the Department of Energy’s Argonne National Laboratory have 3D-printed parts which will facilitate recycling more spent nuclear fuel.

Currently, nuclear engineers can recycle 95% of spent fuel from a nuclear reactor, with the remaining 5% having to be stored as ‘long-term’ waste. The aforementioned 3D-printed equipment can be used to sort and recycle some of the latter, meaning that an extra 2% of nuclear waste can be recycled. Long term waste can be dangerous, misplaced, stolen or dispose of later in an incorrect manner.

2% might not sound like a particularly impressive percentage, but when you consider that it’s 2% of 5% of waste that can’t be dealt with without moving to some kind of long-term storage – which obviously isn’t an ideal scenario – you get a bit more of an idea of the sort of leap that’s being made here. Transporting the nuclear waste can be more dangerous than storing it!

Tagged with: , ,
Posted in Announcements, Engineering

3D Printing News – Medical Device Manufacturer Saves Money With Metal 3D Printing

Surgical tool manufacturer Shukla Medical is saving $120,000 per year after harnessing medical 3D printing systems to prototype surgical instruments.

The company, a subsidiary of aerospace manufacturer S.S. White Technologies, supplies orthopaedic surgeons across the United States.

It has traditionally used CNC machining to develop its prototypes, which would be sent to orthopaedic surgeons to test before the final parts were manufactured, but with the long lead times growing tiresome decided a change of approach was necessary in 2017. The company first installed one of Markforged’s continuous carbon fibre platforms and later brought a Metal X system in-house too to take advantage of its 17-4 PH Stainless Steel, a similar material to that of its end products.

Not only have lead times reduced, and surgeons have been able to assess functional prototypes, but Shukla Medical also achieved return of investment within one year.

“3D printing the prototype product helps our surgeons test the part in their hands before going into the operating room, so they already have the experience and confidence in the tool,” commented Zack Sweitzer, Product Development Manager at Shukla Medical. “We’re going to bring a lot more products to market faster with our Markforged printers and we finally have the design freedom to do it.

Tagged with: , ,
Posted in Health, Medical

3D Printing News – Military Leads The Way For 3D Printing In France

The French armed forces have been employing 3D printing to produce spare parts for far-off bases in highly remote regions such as Mali. It can be almost impossible to procure supplies and equipment on the field…and therefore the military contracted Desert Tactical Group – Logistics “Charentes” in testing 3D printed replacements for broken components. With the aid of Formlabs and Ultimaker 3D printers, they have managed to severely speed up the supply chain and cut part transportation costs.

Technologies like additive manufacturing and 3D scanning can be a great means of simplifying operations for bases in desolate areas. The French Army have been 3D printing multiple parts including protective shells, seals, and parts for optics, which would be otherwise inaccessible for places like Mali or Niger. On top of that, the French armed forces are maintaining a base that houses 4,500 personnel. These factors make equipment supply and maintenance even trickier, so 3D printing is a natural solution. Get ready for every military installation, every ship and maybe every tank to have a 3D printer!

Tagged with: , ,
Posted in Engineering, Manufacturing

3D Printing Trade Association – 10 Surprises 3D Printing Applications!

Prosthetics, Skin, Homes, Organs. The list goes on and on. In home construction, for example,3D printing is being used to make the world a better place is by reducing the cost of home construction enough to make new houses accessible to those whose income puts adequate shelter beyond their reach.

One company that has made this its mission is ICON. Its tagline is “We’re changing the way people live.” It set out to apply 3D printing to houses and envisions whole communities set up that way in a kind of 21st-century version of Levitton.

Last year ICON built the Chicon house, described as “the first permitted 3D-printed home built in the United States” in Austin, Texas in 2018. It took a few weeks to print “and sparked the imagination of customers, investors, press, and the SXSW conference community.”

Read the full article here

Tagged with: , ,
Posted in Announcements, Favorites

3D Printing Association – 3D Printing With Titanium

Does this signify that the days of 3D Printing with plastics alone are over?

With the wide variety of advancements being made in the field of modern technology, just about all facets of life are affected. From casual entertainment to different applications in business and commerce, technological developments have allowed us to enjoy various different services with greater ease and convenience. Among the latest advancement are printers that are capable of reproducing three dimensional objects for use in numerous fields. This has allowed for many breakthroughs to occur in the fields of medicine and mass reproduction, especially considered the materials with which these printers function. Recent developments have allowed for titanium to be utilized as a construction material in the 3D printing process.

3D printing titanium is also known as direct metal laser sintering, and it is an additive metal fabrication process that was developed in Germany. This process builds on the basic principles of 3D printing through the application of metallic materials for direct utility in just about any field that would need the uses of such immediately developed technology. So far, the technology has been utilized to create articles of titanium jewelry, as well as mechanical parts for bicycles and other transportation equipment. Currently, the most commonly utilized alloys in the creation process include several different types of stainless steel, as well as cobalt chromium and titanium. However, because of the immediate application of the printing process, just about any type of alloy can be theoretically utilized once it has been developed and validated.

Tagged with: , ,
Posted in Engineering, Rapid Prototyping

3D Printing News – 3D Printing Trade Association Looks At New 3D Printing Heart Technology

A team of scientists from Carnegie Mellon University have achieved a breakthrough in bioprinting, taking us a step closer to printing functional organs. The research consisted of using an advanced version of FluidForm’s Freeform Reversible Embedding of Suspended Hydrogels (FRESH) technology to rebuild components of the human heart.

Recently published in the journal Science, the Carnegie-led research project showcased the ability to 3D print collagen with “unprecedented complexity” to construct various parts of the human heart, including small blood vessels, valves and beating ventricles. The breakthrough was made possible using FRESH technology, a patented bioprinting process licensed to FluidForm.

FluidForm was first formed out of a research project at Carnegie Mellon’s Regenerative Biomaterials and Therapeutics Group to bring to market and commercialize the innovative FRESH bioprinting technique. The platform uses a needle-deposition system to print bioinks and other soft materials. The process is unique for using the “power of non-newtonian gels to allow movement through a material like it’s a liquid, while supporting deposited material like it’s a solid.”

Tagged with: , ,
Posted in Bioprinting

3D Printing Trade Association Recommends 3D Printing Business Course

3D Printing Company Interviews

More and more firms are getting into 3D Printing, and more and more start ups are failing due to general business knowledge. 3D Printing Trade Association members have started on online business course which discusses the business end of 3D Printing. The course outline is below, but click here for the 3D Printing Business Course

The course outline follows:

Course Outline

Introduction to 3D Printing
How does 3D Printing Work?
Who is (and who will be) using 3D Printing?
What are the main issues to consider in 3D Printing?
What are the trends in the 3D Printing Industry?
What are the Key Success Factors for, and top mistakes made by, 3D Printing firms?
Strategic Planning for 3D Printing companies
Marketing 101 for 3D Printing firms (blunders included)!
How to generate leads for your 3d printing project or service.>/li>
Sales and Sales Management for 3D Printing firms
How to build a budget for 3D Printing firms
Leadership and Management development for 3D Printing companies
International aspects and opportunities in 3D Printing
10 Ways a 3d Printing firm should work a trade show
What does government need to know about 3D Printing?
Conclusions/Resources/Websites

Tagged with: , ,
Posted in Education

3D Printing Trade Association – First Ever 3D Printing In Hospitals!

LimaCorporate, an Italian medical device company specializing in reconstructive orthopedic implants, is currently creating the first on-site 3D printing facility at a hospital. Recently, the company confirmed that the construction process was underway at the Hospital for Special Surgery (HSS) in New York. The two confirmed their partnership in January of this year, and now plan to have the new facility up and running in 2020. This LimaCorporate center is expected to serve hospitals in the region prior to expanding across America.

HSS has been using customized implants from LimaCorporate’s Italian center for three years. LimaCorporate has been using additive manufacturing techniques since 2007 to make high end 3D printed implants using Electron Beam Melting (EMB) on GE Additive’s Arcam systems. These implants leverage the Trabecular Titanium biomaterial, which is designed to enhance both vascularization and cell migration. This technology increases the movement of oxygen, ions, nutrients, and bone inducing factors, ultimately improving the formation of new bone and acceptance of the new implant. Their titanium hip cup made in this fashion has proven to stay effective 10 years after implantation.

“HSS and Lima had been working very successfully together on multiple projects under a Master Development Agreement since March 2016,” said Leonard Achan, Chief Innovation Officer at the Hospital for Special Surgery. “At the same time, Lima had placed a strategic emphasis on building its ProMade custom implant business, a market segment that can benefit greatly from use of additive manufacturing and that is fairly underserved in the orthopedic industry.”

Tagged with: , ,
Posted in Health

3D Printing Trade Association – Carbon 3D Raises $260 Million

Reports emerged back in April that the Redwood City, California-based company was seeking to raise up to $300 million, which we now know was in the ballpark. This round takes Carbon’s total raised to $680 million and follows its $200 million series D raise from 2017, when it claimed a $1.7 billion valuation. Pitchbook estimated earlier this year that Carbon could now be valued at up to $2.5 billion, and we’re told the company has in fact reached a valuation of $2.4 billion with this latest round.

Founded in 2013, Carbon is one of a number of startups developing 3D printing technologies to open up digital manufacturing to more creators and companies. It operates at the intersection of “hardware, software, and materials science,” as the company puts it, with specialized “digital light synthesis” technology that meshes light projection with programmable resins to transform the liquids into solid materials. Moreover, it can create complex, intricate constructions not possible with traditional mold injections, while ensuring the final product is both sturdy and lightweight.

Read the full article here

Tagged with: , ,
Posted in Announcements

Metal 3D Printing Trends In 2019 – Association of 3D Printing

As recently as three years ago, no metal 3D printing systems cost less than $500,000 to implement. Realistically, most metal printers — including purchase, installation, and support — cost north of a million dollars. A high high cost when you’re talking new (and often experimental) technology. Most used selective laser melting (or a close derivative), a process requiring a high-power laser and powder management system. These large, expensive, difficult to maintain machines would sit in a large company’s innovation lab, printing out either prototypes or exploratory designs.

In the last few years, two critical changes have ushered in a divergence in how metal printing is used. First, a number of companies have released more affordable metal printers, ($100k-$200k startup cost) reducing the financial barrier to entry and allowing more companies to invest in the process for a wider variety of applications. Second, companies like GE Additive (by purchasing two metal 3D printer companies) and HP (by developing their own Binder Jetting printer) have experimented and succeeded in implementing additive manufacturing at a larger scale, utilizing investments in the tens or even hundreds of millions to produce end-use parts at production volumes. Don’t forget the myriad of start ups as well as foreign firms. We now have two distinct goals: proliferating metal 3D printers and utilizing metal additive manufacturing for true production.

Tagged with: , ,
Posted in Business