The capabilities of 3-D printing hardware are evolving rapidly, too. They can build larger components and achieve greater precision and finer resolution at higher speeds and lower costs. Together, these advances have brought the technology to a tipping point—it appears ready to emerge from its niche status and become a viable alternative to conventional manufacturing processes in an increasing number of applications. Here are two trends due to 3D Printing:
1. Accelerated product-development cycles
Reducing time in product development was a key benefit of the first 3-D printing machines, which were designed to speed the creation of product prototypes (and in some cases helped reduce turnaround times to a matter of hours, from days or weeks). Now many industries are poised for a second wave of acceleration as the line between additive and conventional manufacturing blurs.
For example, additive manufacturing is already being used to get prototypes into the hands of customers faster, for quicker and more detailed feedback. (This is happening thanks to advances in printer resolution, higher-definition coloration, and the broader use of materials, such as elastomers, that help customers envision the final product.) The ability to make prototypes without tooling lets companies quickly test multiple configurations to determine customer preferences, thus reducing product-launch risk and time to market. Companies could even go into production using 3-D printed parts and start selling products while the traditional production tools were still being manufactured or before the decision to produce them had been made. When companies did order those tools, they could use additive-manufacturing techniques to make them, saving even more time and money.
We expect that the use of such techniques will contribute to significant reductions in product-development cycle times over the next decade. Over time, 3-D printing will begin to affect how companies think about R&D more broadly, given how the technology enhances the ability to crowdsource ideas through remote cooperation. For some companies, that crowdsourced brainpower might one day begin supplanting R&D activities, making its management a new priority.
2. New manufacturing strategies and footprints
As of 2011, only about 25 percent of the additive-manufacturing market involved the direct manufacture of end products. With a 60 percent annual growth rate, however, that is the industry’s fastest-growing segment. As costs continue to fall and the capabilities of 3-D printers increase, the range of parts that can be economically manufactured using additive techniques will broaden dramatically. Boeing, for example, already uses printers to make some 200 part numbers for ten different types of aircraft, and medical-products companies are using them to create offerings such as hip replacements.3
Nonetheless, not every component will be a candidate for the technology and reap its benefits (cost reductions, performance improvements, or both). Companies should understand the characteristics that help determine which ones are. These include components with a high labor-cost element (such as time-consuming assembly and secondary machining processes), complex tooling requirements or relatively low volumes (and thus high tooling costs), or high obsolescence or scrap rates. Forward-looking manufacturers are already investigating ways of triaging their existing parts inventories to determine which hold the most potential.
Additive-manufacturing techniques also have implications for manufacturing-footprint decisions. While there is still a meaningful labor component to 3-D printed parts, the fact that it is lower than that of conventionally manufactured ones might, for example, tip the balance toward production closer to end customers. Alternatively, companies could find that the fully digital nature of 3-D printing makes it possible to produce complex parts in remote countries with lower input costs for electricity and labor.
A related area that executives should watch with interest is the development of the market for printing materials. The cost of future materials is uncertain, as today many printers use proprietary ones owned or licensed by the manufacturer of the printing equipment. Should this change and more universal standards develop—thus lowering prices—the implications for executives devising manufacturing strategies and making footprint decisions would become very significant very quickly.