A team of scientists from Carnegie Mellon University have achieved a breakthrough in bioprinting, taking us a step closer to printing functional organs. The research consisted of using an advanced version of FluidForm’s Freeform Reversible Embedding of Suspended Hydrogels (FRESH) technology to rebuild components of the human heart.
Recently published in the journal Science, the Carnegie-led research project showcased the ability to 3D print collagen with “unprecedented complexity” to construct various parts of the human heart, including small blood vessels, valves and beating ventricles. The breakthrough was made possible using FRESH technology, a patented bioprinting process licensed to FluidForm.
FluidForm was first formed out of a research project at Carnegie Mellon’s Regenerative Biomaterials and Therapeutics Group to bring to market and commercialize the innovative FRESH bioprinting technique. The platform uses a needle-deposition system to print bioinks and other soft materials. The process is unique for using the “power of non-newtonian gels to allow movement through a material like it’s a liquid, while supporting deposited material like it’s a solid.”